

Special Symposium to Honour the Life's Work of Ulrich Wobus

Using Genomics to Dissect Seed Development

BOB GOLDBERG 6/27/08

Today's Headlines

The New York Times

Los Angeles Times

A Global Need for Grain That Farms Can't Fill

Published: March 9, 2008

Economist.com

High Rice Cost Creating Fears of Asia Unrest

By KEITH BRADSHER Published: March 29, 2008 U.S.News

CNN.com

THE FOOD CHAIN

A Drought in Australia, a Global Shortage of Rice

Across Globe, Empty Bellies Bring Rising Anger

updated 10:42 p.m. EDT, Mon April 14, 2008

Riots, instability spread as food prices skyrocket

The Washington Post

We Face Major Challenges In Agriculture Even Greater Than Those in Today's Headlines

OVER 50 YEARS WE WILL NEED TO PRODUCE MORE FOOD THAN IN THE WHOLE OF HUMAN HISTORY -- AND DO IT ON THE SAME (or less) AMOUNT OF ARABLE LAND!!!!

Aerial Photograph of UCLA in 1929

There Were 18,000 Farms in Los Angeles County in 1930!!! From 1901 to 1950 Los Angeles County Was the Largest Agricultural Producing County in the US!!!

Bel-Air

(Farms!!)

Beverly Hills

Hilgard Blvd.

Sunset Blvd.

Westwood Blvd.

Original Agricultural College and Citrus/Avocado Orchard

Thelner Hoover - 4/11/29

So....How Can Seed Yields Be Improved? Use a Variety of Approaches To Identify Genes Critical For Fundamental Seed Processes (Yo!!-It's the Yield That Counts!)

And......There's Also A Problem With Using Land For Energy Production.....

So.....Why Seeds??

Seeds Protect and Disperse Plant Embryos and Come in Many Shapes and Sizes!

Seeds Are Used in Many Ways as Food, Beverages, Spices, and Fuels!

Most Importantly..... Our Food is Derived From Fourteen Crops & <u>Over Half</u> Produce Seeds For Human and Animal Consumption

- Wheat
- Rice
- Corn
- Barley
- Sorghum
- Soybean
- Common Bean
- Coconut

Non-Seed Crops

- Potato
- Sweet Potato
- Cassava
- Sugar Beet
- Sugar Cane
- Banana

In Some World Populations 75% of Calories Are Derived From Seeds!

How Is a Seed Formed?

Remember...... a Seed Contains the Mature, Dormant Embryo That is the Next Plant Generation

In the Beginning....

And How Are They Wired in a Plant Genome?

More Specifically......What Are The Genes Required to Program <u>Every</u> Compartment, Tissue, and Cell Type During Seed Development?

Major Seed Biology Questions Discussed Today

- What Is the Nature of Seed-Specific Regulators?
- How Many Genes Required to Make an Entire Seed?
 - What DNA Sequences Are Required For Seed Region-Specific Transcription?

Genome-Wide Profiling of mRNAs During the Entire Arabidopsis Life Cycle

Gene Activity Before, During, And After Arabidopsis Seed Development

	SEED DEVELOPMENT						
Sy.	ec sy Ov	zy 24H	GLOB	COT	MG	PMG	st SDLG
	OV	24H	GLOB	СОТ	MG	PMG	SDLG
Total mRNAs	12,591	12,421	13,722	13,103	10,875	8,779	13,185
TF mRNAs	999	995	1,089	1,051	851	699	1,016
Unique mRNAs	22	16	100	50	26	31	505
Unique TFs	4	0	17	9	4	6	57
Shared mRNAs (TFs)	6,937 (477)						

http://estdb.biology.ucla.edu/genechip

Gene Activity Before, During, And After Arabidopsis Seed Development

	SEED DEVELOPMENT							
Sy*	ec sy Ov	zy 24H	GLOB	COT	MG	о Со Прис	st SDLG	
	OV	24H	GLOB	СОТ	MG	PMG	SDLG	
Total mRNAs	12,591	12,421	13,722	13,103	10,875	8,779	13,185	
TF mRNAs	999	995	1,089	1,051	851	699	1,016	
Unique mRNAs	22	16	100	50	26	31	505	
Unique TFs	4	0	17	9	4	6	57	
Shared mRNAs (TFs)	6,937 (477)							

http://estdb.biology.ucla.edu/genechip

Gene Activity Before, During, And After Arabidopsis **Seed Development**

	SEED DEVELOPMENT									
No contraction of the second s	syar	ac sy Ov	zy 24H	GLOB	COT	MG	PMG	st SDLG		
		OV	24H	GLOB	СОТ	MG	PMG	SDLG		
Total mRNAs	1	2,591	12,421	13,722	13,103	10,875	8,779	13,185		
TF mRN/	As	999	995	1,089	1,051	851	699	1,016		

50

9

26

4

31

6

505

57

http://estdb.biology.ucla.edu/genechip

100

17

Unique

mRNAs

Shared **mRNAs**

(TFs)

Unique TFs

22

4

6,937 (477)

16

0

Shared mRNAs

Are There Seed-Specific Genes That May Play a Critical Role in Programming Seed Development?

Identification of Seed-Specific mRNAs in the Arabidopsis Life Cycle

() Indicates number of transcription factor mRNAs

...at the GeneChip Level!!

Validation of "Seed-Specific" Genes Using Public Microarray Data

Identification of "Seed-Specific" Transcription Factor mRNAs

* Mutation in these genes affects or disrupts embryo/seed development (15)

* Mutation in these genes affects or disrupts embryo/seed development (7) Seed Stages: 24H, 24Hr Post-Pollination; G, Globular; C, Cotyledon; M, Mature Green; PM, Post-mature Green

ABI3-VP1 REPRODUCTIVE **SEEDLING &** (G,C) LEC2 ORGANS 190 219 VEGETATIVE (G,C,M,PM) * FUS3 567 (31) ORGANS (C,M) (67) **B3** Family TF AP2/EREBP 8.084 (PM) * AP2 Domain Protein 162 () Indicates number of 100 (C.M.PM) Aintegumenta-Like 7 transcription factor mRNAs SEED ARF 289 STAGES (49) (G) * ARF21 ARR-B ARR19 Myb-Related Protein Homeobox ARR21 / ARR13 (G,C,M) Homeodomain Protein NAC Domain (24H,G,C,M,PM) ARR22 ATML1-Like No Apical Meristem (NAM) AS2 Homeodomain Protein Polycomb Group LOB Domain Protein 18 (M) MEDEA MADS-Box LOB Domain Protein 35 (M.PN) MADS-Box TF CCHC-Type Family Protein AUX-IAA MADS-Box TF WRKY (24H,G,C,M) IAA31 (G) * WRKY10; MINI3 AGL33 Basic Leucine Zipper AGL 35 Zinc Finger (C,M,PM) * AtbZIP67; DPBF2 (C,M,PM) * PEI1 AGL 36 * AtbZIP72 AGL45 C2H2-Type Zinc Finger AtbZIP15 (G,C) C2H2-Type Zinc Finger AGL57 CCAAT-Box (G,C) AGL91 C3HC4-Type RING Finger (G,C) * LEC1 (G) MY8 C3HC4-Type RING Finger (G,C,M) * L1L (M, PM) (G,C) AtMYB107 Dof-Type Zinc Finger HAP5A-Like (24H,G) **Myb-Related Protein** RABBIT EARS (RBE) Heat-Shock (PM) * AtMYB67; AtY53 Unclassified (G,C) * HSF1-Like (G,C) * Myb-Related Protein SAP: Sterile Apetala (PM) * Heat Shock TF

Identification of "Seed-Specific" Transcription Factor mRNAs

* Mutation in these genes affects or disrupts embryo/seed development (15) * Mutation in these genes affects or disrupts embryo/seed development (7) Seed Stages: 24H, 24Hr Post-Pollination; G, Globular; C, Cotyledon; M, Mature Green; PM, Post-mature Green

leafy cotyledon1 (lec1) Mutants Disrupt Seed Development

- Suppression of Suspensor Embryonic Potential
- Development of Cotyledon Identity
- Initiation and Maintenance of Seed Maturation
- Inhibition Germination

Lotan et al., Cell, 1998

Lec1 Induces Embryo Development on Engineered Leaves!!

Lotan et al., Cell, 1998; Lee et al., PNAS, 2003; Kwong et al., Plant Cell, 2003

The lec1 Mutation Disrupts the Activity of "Seed-Specific" Genes

Where Are Seed-Specific Genes Active Within the Seed?

Identification of "Seed-Specific" Transcription Factor mRNAs

* Mutation in these genes affects or disrupts embryo/seed development (15)

* Mutation in these genes affects or disrupts embryo/seed development (7) Seed Stages: 24H, 24Hr Post-Pollination; G, Globular; C, Cotyledon; M, Mature Green; PM, Post-mature Green

Transcriptional Patterns of Seed-Specific Transcription Factor Upstream Regulatory Region

What Transcription Factor Genes Are Active in the Chalazal Endosperm?

"Making A Globular Stage Soybean Seed"

Diversity of Oil Seed Plants

Why Soybean?

- Second Major US Crop
- Major Food Source
- Major Biofuel Source
- Excellent Model Plant
- Genome Sequenced (2008)
- Major Funding Source

Oilseed Rape

How Can We Profile Gene Activity in All Seed Compartments, Regions, & Tissues?

Combine Laser Capture Microdissection (LCM) Technologies With Genomics Approaches.

Using Laser Capture Microdissection (LCM) & Soybean GeneChips to Investigate Gene Activity In Seeds

Spectrum of Gene Sequences Represented on the Soybean Affymetrix EST GeneChip (2007)

Functional Categories

Transcription Factors

~2,800 TF Transcripts

Contains Probe Sets Representing 38,000 Soybean Transcripts (~30,000 Clusters/~23,000 Predicted cDNAs) Derived From ~85 cDNA Libraries From Plant Regions and Multiple Developmental Stages (Not a Whole Genome Chip)

							Supported by	Va 🍪 National Science Foundation
Gene Identifyt	E NET ing all the	WORKS II genes and get	N SEED	DEVE required to	LOPME	NT eed [*]		
Home	About	Annotation	454_ESTs	Browse	Analyze	Blast	People L	inks

About	Click here to learn about the Seed Gene project.
Browse	Click here to browse the gene expression profiles of different compartments in Soybean and Arabidopsis seed at different developmental stages.
Analyze	Click here to compare gene activity in different Soybean and Arabidopsis seed compartments.
Blast	Click here to BLAST your sequence against target sequences on the GeneChip arrays and view the seed expression pattern related to your sequence.

http://estdb.biology.ucla.edu/seed

http://estdb.biology.ucla.edu/seeds

Gene Activity in an <u>Entire</u> Globular-Stage Seed Immediately After Fertilization

	S	EP	ES	EN	Ш	OI	EPD	HI
Total mRNAs*	14,177	16,998	13,880	15,274	14,767	16,402	13,451	16,153
TF mRNAs	909	1,100	848	950	927	1,073	837	1,057
Unique mRNAs	74	96	98	39	37	36	23	49
Unique TF mRNAs	5	17	11	3	4	2	2	6
Shared mRNAs	9025							

* The present call in globular stage is defined as "present" at least in two biological replicates. One factor ANOVA p>0.05

http://www.estdb.biology.ucla.edu/seed

Gene Activity in an <u>Entire</u> Globular-Stage Seed Immediately After Fertilization

	S	EP	ES	EN	Ш	OI	EPD	HI
Total mRNAs*	14,177	16,998	13,880	15,274	14,767	16,402	13,451	16,153
TF mRNAs	909	1,100	848	950	927	1,073	837	1,057
Unique mRNAs	74	96	98	39	37	36	23	49
Unique TF mRNAs	5	17	11	3	4	2	2	6
Shared mRNAs	9025							

* The present call in globular stage is defined as "present" at least in two biological replicates

Note: Unique genes are specific at the level of the GeneChip and within the seed

Globular-Stage Seed Compartments Have a Unique Set of Transcription Factor Genes

Quantitative RT-PCR Validation of Putative Globular-Stage "Seed Region-Specific" mRNAs

	Emb	ryo	Endosp	erm	Se Balance	ed coat		
o Anical M	Suspensor	proper	▼ Endosperm	/ Endothelium	Inner Integument	Outer Integumen	/ _t Epidermis	Hilum (not shown)
GeneChip	Present	A	Α	Α	Α	Α	Α	Α
qRT-PCR	30.9±3.2	ND	ND	ND	ND	ND	ND	ND
ytochrome	P450 family p	protein	·					
GeneChip	Α	Α	Α	Present	Α	Α	Α	Α
qRT-PCR	ND	ND	ND	35.0±0.6	ND	ND	ND	ND
rotease inh	ibitor/seed st	orage						
GeneChip	Α	Α	Α	Α	Present	Α	Α	Α
qRT-PCR	ND	ND	ND	ND	32.6±0.7	ND	ND	ND
nc Finger l	Family (C2H2-	type)						
GeneChip	Α	Α	Α	Α	Α	Α	Α	Present
qRT-PCR	ND	ND	ND	ND	ND	ND	ND	35.8±2.4

A=Absent = Not Detected at GeneChip Level

N

ND = Not Detected at Level of qRT-PCR

Quantitative RT-PCR Validation and GUS Activity of a Globular-Stage "Seed Region-Specific" mRNA

GmSTM-Like (Shoot Meristemless-like) Transcription Factor (GmaAffx.63050.1.S1_at)

GeneChip	Α	Р	Α	Α	Α	Α	Α	Α
qRT-PCR	ND	30.0±0.6	ND	ND	ND	ND	ND	39.5±1.1
Fold Reduction	-	1	-	-	-	-	-	- 687

A=Absent = Not Detected at GeneChip Level

GmSTM-like promoter/GUS Gene Activity in Soybean Seeds

Quantitative Regulation of mRNAs <u>Shared</u> by Soybean Globular-Stage Seed Compartments

Quantitative Regulation of mRNAs <u>Shared</u> by Soybean Globular-Stage Seed Compartments

How Many Genes Are Active in a Globular-Stage Soybean Seed?

Note: Minimum Numbers!!

(Transcription Factors)

What Are The Genes Required to Program Every Compartment, Tissue, and Cell Type During Soybean Seed Development?

Note: Numbers Refer to Specific Seed Stages Studied

More Than 40 Soybean Seed Compartments Have Been Studied Using GeneChip and LCM Technology

epd oi es ep ent hi	es hi ent	oi epd ep es ii ent s →hi
Globular	Heart	Cotyledon
Embryo proper (ep)	Endosperm (es)	Endothelium (ent)
Inner Integument (ii)	Epidermis (epd)	Hilum (hi)
Outer Integument (oi)	Suspensor (s)	

Cotyledon-Adaxial parenchyma (coty-AD-py) Seed coat-parenchyma (py)

Axis-vascular bundle (Axis)

Axis-parenchyma (Axis-py)

How Many Genes Are Required to Program Soybean Seed Development?

40 Compartments & Tissues Profiled- More than 3.7 Million Data Points!!

Each Soybean Seed Compartment Has a Unique Set of mRNA at Different Developmental Stages

Each Soybean Seed Compartment Has a Unique Set of mRNA at Different Developmental Stages (e.g., <u>Seed Coat</u>)

What Are The Major Patterns of Gene Activity During Soybean Seed Development?

Spatial Patterns of Transcription Factor mRNAs Upregulation During Early Soybean Seed Development

Temporal Pattern of Transcription Factor mRNA Upregulation in All Seed Compartments During Early Maturation

Arabidopsis Seed Compartments Captured for RNA Profiling Studies

Globular-Stage

Linear Cotyledon-Stage

General Seed Coat (GSC)	Suspensor (S)
Peripheral Endosperm (PE)	Chalazal Endosperm (CHE)
Embryo Proper (EP)	Chalazal Seed Coat (CHSC)
Micropylar Endosperm (ME)	Cellularized endosperm (CES)

Gene Activity in an Entire Globular-Stage Arabidopsis Seed Immediately After Fertilization

Quantitative Regulation of Transcripts Shared by Arabidopsis Globular Stage Seed Compartments

Comparison of Soybean and Arabidopsis Gene Activity at Globular- and Cotyledon-Stage

How Are Genes Activated in Different Seed Compartments Following Fertilization?

What Are the DNA Regulatory Sequences Important for Activating Transcription in the Suspensor?

What Region in the G564 Upstream Sequence Is Important for Transcription in the Suspensor?

• Transcriptional Activity in the Suspensor Is Abolished When the Upstream Sequence Is Deleted to -662.

• Transcriptional Activity in the Suspensor Is Abolished When All 150-bp Duplications Are Deleted.

A Model of G564 Transcription in the Suspensor

Transcription factors found in SRB SUSPENSOR (N = 3,107)

- At Least 15,000 Diverse mRNAs Are Present in Each Seed Compartment, Region, and/or Tissue
- At Least 22,000- 24,000 Diverse mRNAs Are Present in a Seed as a Whole Depending on the Stage (i.e., Genes Required to "Make a Seed")
- At Least 26,000 Diverse mRNAs Are Required to Program Seed Development
- Most Diverse mRNAs are Shared by Different Compartments, Regions, and Tissues -- Many Are Quantitatively Regulated
- Each Compartment Region, and Tissue Has a Small Set of "Specific" mRNAs, Including Those Encoding Transcription Factor mRNAs
- Sequences Are Beginning to Be Identified That Activate Transcription in Different Seed Regions

The End.....or Is It the Beginning?

A Giant Seed!

GOLDBERG LAB

Current Lab Members Anhthu Bui Brandon Le Chen Cheng Min Chen Tomo Kawashima Jungim Hur Kelli Henry Bekah Charney Daisy Robinton

Former Lab Members/ Javier Wagmaister Xinjun Wang Shundai Li

Monsanto Collaborators Dave Somers John Danzer

UC Davis Collaborators John Harada Julie Pellitier Ryan Kirkbride Mark Belmonte Sandra Stone

IGLA

Funded By an NSF Plant Genome Grant To Bob Goldberg and John Harada

How Will Seed Yields Be Increased in the Future?

As We Always Have.....By Using the Best Cutting-Edge Science!!!

Plant Genome Projects Are Identifying Genes Essential For Increasing Crop Yields!!

Plant Genomes Sequenced To Date

- Arabidopsis
- Rice
- Poplar Tree
- Soybean
- Corn
- Medicago
- Papaya
- Grape
- Castor Bean

These Genes Will Help Increase Food Production Significantly in the 21st Century To Feed Our Growing Population

Rice

Yield (Developmental Traits

- Seed Number
- Seed Size
- Growth Rate
- Organ Size (More Seeds)
- Plant Architecture
- Flowering Time
- Senescence
- Maturity
- Stature

<u> Yield (Stress Traits)</u>

- Nutrient Uptake
- Drought Resistance
- Heat Resistance
- Cold Tolerance
- Salt Tolerance
- Shade Tolerance
- Disease Resistance

One Way is to Use These New Traits in Engineered Crops That Farmers Have Adopted Faster Than Any New Agricultural Technology In the Past 100 Years!

Over One Billion Acres of Bioengineered Crops Have Been Grown World-Wide Since 1996 and 250 Million Acres in 2007

Engineered Crops Have Increased Yields, Reduced Pesticide Use, and Increased Incomes of Farmers in the Developing World

United Nations FAO Report No. 35, 2003-04; Scientific American, September, 2007
However...There's a Battle Raging to Get Bioengineered Crops Adopted in Many Parts of the World

.....And This Has an Effect on the Lives of People...Especially in the Developing World

Outside of Delhi, India With Journalist Barun Mitra

The End.....or Is It the Beginning?

A Giant Seed!